Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 196(2): 124, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195837

RESUMEN

Urban Heat Islands (UHIs), Land Surface Temperature (LST), and Land Use Land Cover (LULC) changes are critical environmental concerns that require continuous monitoring and assessment, especially in cities within arid and semi-arid (ASA) climates. Despite the abundance of research in tropical, Mediterranean, and cold climates, there is a significant knowledge gap for cities in the Middle East with ASA climates. This study aimed to examine the effects of LULC change, population, and wind speed on LST in the Mashhad Metropolis, a city with an ASA climate, over a 30-year period. The research underscores the importance of environmental monitoring and assessment in understanding and mitigating the impacts of urbanization and climate change. Our research combines spatial regression models, multi-scale and fine-scale analyses, seasonal and city outskirts considerations, and long-term change assessments. We used Landsat satellite imagery, a crucial tool for environmental monitoring, to identify LULC changes and their impact on LST at three scales. The relationships were analyzed using Ordinary Least Squares (OLS) and Spatial Error Model (SEM) regressions, demonstrating the value of these techniques in environmental assessment. Our findings highlight the role of environmental factors in shaping LST. A decrease in vegetation and instability of water bodies significantly increased LST over the study period. Bare lands and rocky terrains had the most substantial effect on LST. At the same time, built-up areas resulted in Urban Cooling Islands (UCIs) due to their lower temperatures compared to surrounding bare lands. The Normalized Difference Vegetation Index (NDVI) and Dry Bare-Soil Index (DBSI) were the most effective indices impacting LST in ASA regions, and the 30×30 m2 micro-scale provides more precise results in regression models, underscoring their importance in environmental monitoring. Our study provided a comprehensive understanding of the relationship between LULC changes and LST in an ASA environment, contributing significantly to the literature on environmental change in arid regions and the methodologies for monitoring such changes. Future research should aim to validate and expand additional LST-affecting factors and test our approach and findings in other ASA regions, considering the unique characteristics of these areas and the importance of tailored environmental monitoring and assessment approaches.


Asunto(s)
Calor , Regresión Espacial , Temperatura , Ciudades , Monitoreo del Ambiente , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...